A Comprehensive Analysis in Terms of Molecule-Intrinsic Quasi-Atomic Orbitals. IV. Bond Breaking and Bond Forming along the Dissociative Reaction Path of Dioxetane.
نویسندگان
چکیده
The quantitative analysis of molecular density matrices in terms of oriented quasi-atomic orbitals (QUAOs) is shown to yield detailed conceptual insight into the dissociation of dioxetane on the basis of ab initio wave functions. The QUAOs persist and can be followed throughout the reaction path. The kinetic bond orders and the orbital populations of the QUAOs quantitatively reveal the changes of the bonding interactions along the reaction path. At the transition state the OO bond is broken, and the molecule becomes a biradical. After the transition state the reaction path bifurcates. The minimum energy path gently descends from the transition state via a valley-ridge inflection point to a second saddle point, from which two new minimum energy paths lead to two equivalent formaldehyde dimers. The CC bond breaks, and the π-bonds of the formaldehyde fragments form in close vicinity of the second saddle point. The changes of the interactions in this region are elucidated by the analysis of the rearrangements of the QUAOs.
منابع مشابه
A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. II. Strongly Correlated MCSCF Wave Functions.
A methodology is developed for the quantitative identification of the quasi-atomic orbitals that are embedded in a strongly correlated molecular wave function. The wave function is presumed to be generated from configurations in an internal orbital space whose dimension is equal to (or slightly larger) than that of the molecular minimal basis set. The quasi-atomic orbitals are found to have lar...
متن کاملNBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method
In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...
متن کاملNBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method
In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...
متن کاملPlatinum-oxygen Bond Formation: Kinetic and Mechanistic Studies
Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with ...
متن کاملA comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions.
Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 119 41 شماره
صفحات -
تاریخ انتشار 2015